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Abstract. A unified approach to Aharonov–Bohm, Aharonov–Casher and which-path
experiments is presented, using an enlarged Hilbert space. This Hilbert space contains quasi-
periodic Aharonov–Bohm wavefunctionsR(x + 2π) = R(x) exp(iθ) with various values ofθ .
Thus it can describe which-path Aharonov–Bohm experiments where the phaseθ is uncertain
due to decoherence that occurs as a result of the observation of the paths of the electric charges.
The same Hilbert space contains quasi-periodic Aharonov–Casher wavefunctions which describe
magnetic flux tubes winding around an electric charge and which are related through a Fourier
transform to the Aharonov–Bohm wavefunctions. The duality between these two phenomena
is discussed. The decoherence occuring in which-path experiments is studied quantitatively.
Magnetic and electric superselection rules, appropriate for the Aharonov–Bohm and Aharonov–
Casher experiments correspondingly, are also discussed.

1. Introduction

The Aharonov–Bohm effect [1–4], studies the interference of electrons that follow two different
paths in the presence of a magnetostatic fluxφ which threads the area between the two paths.
This work provides the theoretical background for the understanding of many other phenomena
(e.g. magnetoresistance oscillations in small rings [5]).

When such an experiment is performed there are two extreme cases. In one the phase
θ = eφ has a certain value; while the dual variable which as we will explain is the charge
(or winding number)w, has large uncertainty. This is realized in Aharonov–Bohm type of
experiments, where the paths of the particles are not observed and we get interference.

In the second extreme case, we have large uncertainty inθ and a certain value ofw. The
experiment now contains a mechanism which observes the paths of the particles. The phaseθ

is disturbed by the measuring apparatus, decoherence occurs and the interference is destroyed.
This has been discussed by several authors [6–8]. More recently it has also been discussed
in the context of ‘which path’ experiments in [9]. Similar experiments have been recently
performed using a mesoscopic ring with a quantum dot, which interacts with a quantum point
contact [10, 11]. The latter plays the role of an observer which determines the path of the
electrons and thus destroys their interference.

Apart from the above two extreme cases, there are in between situations where we have
some uncertainty in the phaseθ (partial decoherence), some uncertainty in the charge (winding
number)w, and partial destruction of the interference.

The Aharonov–Casher effect has also been studied extensively in the literature both
theoretically [12] and experimentally [13, 14]. In contrast to the Aharonov–Bohm effect where
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electric charges wind around a magnetostatic flux tube, in the Aharonov–Casher effect magnetic
flux tubes wind around electric charges. [13] used magnetic dipoles (neutrons) to play the role
of small magnetic flux tubes, while [14] used vortices in Josephson junction arrays. In this
context which-path experiments can also be performed which partially (or totally) destroy the
interference.

The aim of the present paper is to provide a unified approach to all these experiments. Their
study is usually based on a Hilbert space of quasi-periodic functionsR(x+2π) = R(x) exp(iθ)
with fixedθ . The variablex is a coordinate here for the covering space of a circle. Clearly this
Hilbert space is sufficient only when the phaseθ has a fixed value; and it requires enlargement
when the phaseθ is uncertain, in order to accomodate the various values ofθ . We define
explicitly this enlarged Hilbert space and show how two dual bases which are related to each
other through a Fourier transform, can be used for the description of Aharonov–Bohm and
Aharonov–Casher phenomena, correspondingly. We also study quantitatively how in the case
of which-path experiments, the interference is partially (or totally) destroyed.

In section 2 we consider the Aharonov–Bohm effect and enlarge its Hilbert space in order
to be able to describe situations where the phaseθ is not fixed (e.g. the decoherence in which-
path experiments). Superselection rules which divide this enlarged Hilbert space into various
magnetic sectors labelled by the magnetic flux at the centre, are studied. In section 3 we
consider the Aharonov–Casher effect and explain its duality to the Aharonov–Bohm effect.
Here we also show that an enlarged Hilbert space is needed in order to describe which-path
experiments in this context. Dual superselection rules which divide this enlarged Hilbert
space into various electric sectors labelled by the electric charge at the centre, are studied. In
section 4 we present explicitly the enlarged Hilbert space and explain that the Aharonov–Bohm
wavefunctions are related to the Aharonov–Casher wavefunctions through a Fourier transform.
In section 5 we present the charge and flux operators which are dual to each other and act on
this enlarged Hilbert space. In section 6 we study quantitatively the decoherence in which-path
experiments. We conclude in section 7 with a discussion of our results and explain connections
between our ideas and related ideas in other branches of physics.

2. The Aharonov–Bohm effect: electric charges winding around a magnetic flux tube

Here we briefly present the Aharonov–Bohm effect as applied to electron interference
experiments in the presence of magnetostatic flux; then discuss the more general problem
of electric charges moving on a circle threaded by a magnetostatic flux tube; and then enlarge
the Hilbert space in order to be able to describe which-path experiments.

We consider the experiment shown in figure 1, where electric charges that follow two
different pathsc0 andc1 interfere, and the intensity is measured on the screen. A magnetostatic
flux φ is threading the area between the two paths. The electrons feel a vector potentialAi ,
which is related to the magnetic fluxφ through the relation:

φ =
∮
c

Ai dxi (1)

wherec = c1− c0 is a counterclockwise contour around the origin.
LetR0,R1 be the wavefunctions corresponding to the two pathsc0 andc1 (in the absence

of magnetic flux). We neglect for simplicity here paths with higher winding numbers. The
intensity at some point1 on the screen is:

I (1) = |R0 +R1 exp(ieφ)|2 = |R0|2 + |R1|2 + 2|R0||R1| cos(σ + eφ) (2)

whereσ = arg(R1) − arg(R0) (and in units where Planck’s constant, the velocity of light in
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Figure 1. Electron interference in the presence of a magnetostatic
flux in the regionA, which is perpendicular to the plane of the
diagram.

vacuum and Boltzmann’s constant are equal to one: ¯h = c = kB = 1). We consider the case
of equal splitting in which|R0|2 = |R1|2 = 1

2 and get:

I (1) = 1 + cos(σ + eφ). (3)

More generally we consider paths with all winding numbers. LetRN be the wavefunction
corresponding to the pathcN with winding numberN . Then,

I (1) =
∣∣∣∣∑
N

RN exp(ieNφ)

∣∣∣∣2 = 1 +
∑
N

aN cos(σN + eNφ) (4)

whereaN andσN can be expressed in terms of theRN . It is seen that while in equation (3)
I (1) is a sinusoidal function ofφ with period 2π/e, in equation (4)I (1) contains higher
integral harmonics and therefore it is a general periodic function ofφ with period 2π/e. The
visibility, in the case of equation (3) is 1, while in the case of equation (4) is in general less
than 1 and it needs to be calculated numerically for each special case.

We next consider the wider problem of electric charges on a circle, with a magnetic flux
tube threading the circle through its centre. The wavefunctionR(x) obeys the quasi-periodic
boundary condition

R(x + 2π) = R(x) exp(iθ) (5)

whereθ = eφ. It will be convenient from a mathematical point of view, to consider the case
of magnetostatic flux which is a rational multiple of the flux quantum (fluxon):

φ = 2π

e

s

q
(6)

wheres, q are integers. In this case equation (1) becomes

R(x + 2π) = R(x) exp

(
i
2πs

q

)
. (7)

We callH(q; s) the Hilbert space of the functions obeying equation (7).
We now extend the above formalism, to include the which-path cases described in the

introduction, where there is uncertainty in the phase in conjunction with partial (or even full)
knowledge of the paths that the electrons follow. In equations (5), (7) the phase is fixed and
this clearly is not suitable for physical situations where the phase is uncertain. For this reason
we enlarge the Hilbert spaceH(q; s) into the Hilbert spaceH(q) which is the direct sum

H(q) =
q−1∑
s=0

H(q; s). (8)

This space contains functions which obey equation (5) not with a fixed value of the phase, but
with ‘all’ values. For mathematical convenience we consider only discrete values of the phase
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(with step 2π/q), but in the limitq →∞ the phase takes all values. It is easily seen thatH(q)

is the space of periodic functions with period 2πq:

R(x + 2πq) = R(x). (9)

From a physical point of view the periodicity 2πq is easily understood, because as the charges
go from x to x + 2πq they acquire extra phase which is an integer multiple of 2π . This is
true even in the case that the phase is uncertain (provided that it takes only the discrete values
2πs/q).

In [15] we have used this enlarged Hilbert space for a different problem, namely the
study of the back-reaction from the charges on the circle, to the external magnetostatic flux.
In this paper we use the Hilbert spaceH(q) to describe physical situations where we have
some knowledge about the paths of the electrons, some uncertainty in the phase and partial
destruction of the interference.

Note that eachH(q; s)defines a different magnetic sector within the Hilbert spaceH(q), in
the sense that the electron wavefunctions inH(q; s) determine through their global properties
the magnetic flux 2πs/(eq) (which in this context is a topological quantity).

We next consider two states|ψ(s1)〉 and|ψ(s2)〉 in two different magnetic sectorsH(q; s1)
andH(q; s2), correspondingly (s1 6= s2). Superselection rules [16, 17] state that for all local
observables2

〈ψ(s1)|2|ψ(s2)〉 = 0. (10)

Indeed, consider the superposition of states

|R〉 =
q−1∑
s=0

a(s)|ψ(s)〉. (11)

A local observable cannot detect a rotation by 2π performed by the operatorU(2π):

〈R|2U(2π)|R〉 = 〈R|2|R〉. (12)

Using the relation

U(2π)|R〉 =
q−1∑
s=0

a(s) exp

(
i
2πs

q

)
|ψ(s)〉 (13)

we prove equation (10). Another equivalent way of expressing the superselection rules is
by saying that local measurements on the state|R〉 can measure the|a(s)|2 but they cannot
measure the relative phases Arg[a(s1)] − Arg[a(s2)]. Therefore in the context of the present
experiment, superpositions of electron wavefunctions from different magnetic sectors in the
Hilbert space, like the state|R〉, are notphysicallyrealizable; onlymixturesof the type

ρ1 =
q−1∑
s=0

|a(s)|2|ψ(s)〉〈ψ(s)| (14)

are physically realizable, and they describe which-path Aharonov–Bohm experiments. We
will study such experiments in section 6. We refer to the above as magnetic superselection
rules.

3. The Aharonov–Casher effect: magnetic flux tubes winding around an electric charge
line

We present briefly here the Aharonov–Casher effect as applied to vortex interference
experiments in the presence of electric charge; then discuss the more general problem of
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Figure 2. A two-dimensional array of superconducting islands coupled through Josephson
junctions is enclosed by the boundariesL0 andL1. Vortices perpendicular to the plane of the
diagram, travel ballistically from point1′ to point1. The centre contains electric chargeQ induced
through the capacitorC, which is connected to a source. The voltage between the boundariesL0
andL1 (measured with the voltmeter), is proportional to the intensity of the magnetic vortices.

vortices moving on a cylinder with a charge line through its centre; and then enlarge the
Hilbert space in order to describe which-path experiments. There is an electric–magnetic
duality between the Aharonov–Casher case and the Aharonov–Bohm case and the presentation
is such that this duality becomes clear.

The magnetic flux tubes are treated here as quantum mesoscopic objects and are assumed
to be described by a wavefunctionS(x). Following [14] we consider the experiment of
figure 2 where a two-dimensional array of superconducting islands coupled through Josephson
junctions is enclosed by the boundariesL0 andL1. The Josephson coupling energyEJ is
smaller than the charging energyEC , so that the system is in the insulating phase and contains
a condensate of vortices. Magnetic vortices perpendicular to the plane of the diagram, travel
ballistically from point1′ to point1. The centre contains electric charge per unit lengthQ

induced through the capacitorC, which is connected to a source. The chargeQ can be treated
as a classical continuous variable. The magnetic vortices feel the ‘dual potential’ai which is
related to the electric charge per unit lengthQ through the relation:

Q =
∮
c

ai dxi (15)

wherec = c1−c0 is a counterclockwise contour around the origin. Note that like the covariant
momentum of the electron ispi − eAi , the covariant momentum of the magnetic vortex per
unit length ispi − 80ai , where80 = π/e is the magnetic flux of the vortices (we take into
account that Cooper pairs have charge 2e).

Let S0(x) andS1(x) be the wavefunctions corresponding to vortices that follow the paths
c0 andc1, correspondingly (in the absence of the electric chargeQ). Below we use arguments
very similar to those used for electron interference in the previous section, and write the total
wavefunction and intensity (of vortices) at the point1 as:

S(1) = S0 + exp[i80Q]S1 (16)

I (1) = |S0 + S1 exp(i80Q)|2 = |S0|2 + |S1|2 + 2|S0||S1| cos(τ +80Q) (17)

whereτ = arg(S1)− arg(S0). For equal splitting (|S0|2 = |S1|2 = 1
2) this reduces to:

I (1) = 1 + cos(τ +80Q). (18)

Moving magnetic flux tubes create a voltageV between the boundariesL0 andL1 in figure 2
which is proportional to the intensityI (1). Therefore,

V = V0[1 + cos(τ +80Q)]. (19)
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Equations (18) and (19) for vortices are analogous to equation (3) for electrons. We can also
derive the analogue of equation (4), for paths with all winding numbers:

V = V0

∣∣∣∣∑
N

SN exp(iN80Q)

∣∣∣∣2 = V0

[
1 +

∑
N

bN cos(τN +N80Q)

]
. (20)

It is seen that while in equation (19)V is a sinusoidal function ofQ with period 2e, in
equation (20)V contains higher integral harmonics and therefore it is a general periodic
function ofQ with period 2e.

All the above results apply also to the Aharonov–Casher experiment with neutrons [13]
in which case the covariant momentum ispi + ai whereai = εijkµjEk is the dual potential,
µj is the magnetic moment andEk is the electric field generated by the line charge.

We next consider the more general problem of magnetic flux tubes moving on a cylinder
(they always remain parallel to the axis of the cylinder). An electric charge line with uniform
charge density, lies at the centre of the cylinder. The problem is effectively two-dimensional
and the vortex wavefunctionS(x) obeys the quasi-periodic boundary condition

S(x + 2π) = S(x) exp(iθ) (21)

whereθ = 80Q. As we explained above, the charge is treated as a classical continuous
variable, and for mathematical convinience is taken to be:

Q = 2e
w

q
(22)

wherew, q are integers. In this case equation (21) becomes

S(x + 2π) = S(x) exp

(
i
2πw

q

)
. (23)

We callH(q;w) the Hilbert space of the functions obeying equation (23). It is seen that
equation (23) is very similar to equation (7). In both equations the exponential contains charge
times magnetic flux. Note, however, that in equation (7) the magnetic flux takes fractional
values of the flux quantum 2π/e and the electric charge ise. Here the electric charge per
unit length takes fractional values of 2e (we take 2e for Cooper pairs) and the magnetic flux
is π/e. This implies that the vortex wavefunctionsS(x) in the spaceH(q;w), are related
to the electron wavefunctionsR(x) in the spaceH(q; s), through a finite Fourier transform.
This Fourier transform provides a quantitative description of the duality between the electron
(Aharonov–Bohm) wavefunctions and the vortex (Aharonov–Casher) wavefunctions; and it
will be discussed in detail in the next section. It is already clear that the spaceH(q;w) is
different from the spaceH(q; s).

We now extend the above formalism, to include the which-path cases where there is
uncertainty in the phase in conjunction with partial (or even full) knowledge of the paths that
the vortices follow. In equations (21), (23) the phase is fixed and this clearly is not suitable for
physical situations where the phase is uncertain. For this reason we enlarge the Hilbert space
H(q;w) into the Hilbert spaceH(q) which is the direct sum

H(q) =
q−1∑
w=0

H(q;w). (24)

This space contains functions which obey equation (21) not with a fixed value of the phase, but
with ‘all’ values of the phase (for mathematical convenience we consider only discrete values
of the phase). It is not difficult to see that the direct sum in equation (24) is the same as the
direct sum in equation (8), and for this reason we used the same notationH(q).
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TheH(q;w) define various electric sectors within the Hilbert spaceH(q), in the sense
that the vortex wavefunctions inH(q;w) determine through their global properties the electric
charge at the centre 2ew/q (which in this context is a topological quantity).

We next consider two states|χ1(w)〉 and|χ2(w)〉 in two different electric sectorsH(q;w1)

andH(q;w2), correspondingly (w1 6= w2). In this experiment superselection rules state that
for all local observables2

〈χ(w1)|2|χ(w2)〉 = 0. (25)

Therefore, in the context of the present experiment, superpositions of vortex wavefunctions
from two different electric sectors in the Hilbert space, like the state

|R′〉 =
q−1∑
w=0

a(w)|χ(w)〉 (26)

are notphysicallyrealizable; onlymixturesof the type

ρ2 =
q−1∑
w=0

|a(w)|2|χ(w)〉〈χ(w)| (27)

are physically realizable, and they describe which-path Aharonov–Casher experiments. We
will study such experiments in section 6. We refer to the above as electric superselection rules.

We emphasize that the system considered in this section is in a different phase [18] from
the system considered in the previous section. There we had one magnetic flux tube and
electrons winding around it. Although that system was really in the ‘Coulomb phase’, the
experiment simulated the ‘superconducting phase’ where Cooper pairs are winding around a
vortex (which in this context is a topological object). In that case the wavefunction describes
a condensate of Cooper pairs and its phase is related to the vector potential and the magnetic
flux of the vortex. In this section the system is in the ‘insulating phase’ where we have vortices
circulating around an electric charge (which in this context is a topological object). Here the
wavefunction describes a condensate of vortices and itsdualphase is related to thedualvector
potential and the electric charge at the centre. Note that the superselection rules are different in
these two phases. In the first case the magnetic superselection rule states that we can only have
mixtures but not superpositions of electron states that belong to different magnetic sectors of
the Hilbert space. In the second case the electric superselection rule states that we can only
have mixtures but not superpositions of magnetic vortex states that belong to different electric
sectors of the Hilbert space.

4. The Hilbert space for a unified approach

In the Hilbert spaceH(q)we construct a formalism similar to the harmonic oscillator with dual
variables the charge operatorŵ and the magnetic flux operatorŝ. Note that in the experiment
considered in section 2 the operatorŵ can also be interpreted as winding number, i.e., the
charge uncertainty is intimately related to the winding number uncertainty. Similarly, in the
experiment considered in section 3 the operatorŝ can also be interpreted as winding number,
i.e., the the flux uncertainty is intimately related to the winding number uncertainty.

We consider a basis of wavefunctionsv(x,N, s) describing the case of a fixed fluxs:

v(x;N, s) = exp

[
i

(
N +

s

q

)
x

]
. (28)

We will also denote them as|N, s〉. Note thatN + s
q

are momenta consistent with the quasi-
periodic boundary condition of equation (7). In the absence of magnetic flux the momenta
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take the integer valuesN , and the effect of the flux is to shift them fromN toN + s
q
. We also

introduce the states

|x, s〉 =
∞∑

N=−∞
v(x;N, s)|N, s〉 (29)

which can be interpreted in the context of the Aharonov–Bohm experiment discussed in
section 2, as the usual position states for the charges on the circle, when the flux has a certain
values (i.e., zero uncertainty). Linear combinations of the states (29) (with fixeds and varying
N )

|ψ(s)〉 =
∞∑

N=−∞
a′(N; s)|N, s〉 =

∫
dx a′(x; s)|x, s〉 (30)

where
∞∑

N=−∞
|a′(N; s)|2 =

∫
dx |a′(x; s)|2 = 1 (31)

give general wavefunctions characterized by fixeds (which belong inH(q; s)). In these states
the flux is certain and the charge is uncertain. Physically they describe Aharonov–Bohm
phenomena (in the absence of decoherence), which as we explained above are related to the
superconducting phase.

We now consider a dual basis of wavefunctionsu(x,N,w) related to thev(x,N, s)
through the finite Fourier transform:

u(x,N,w) = q−1/2
q−1∑
s=0

v(x,N, s)exp

(
i
2πsw

q

)
. (32)

Here we form the superposition of allv(x,N, s) with phase-factors exp(−ieφw) =
exp(−i 2πsw

q
). We have shown in [15] that:

u(x;N,w) = q−1/2 exp(iNx) exp

[
iπx

(
1− 1

q

)]
Uq−1

[
cos

(
x + 2πw

2q

)]
(33)

whereUq−1 are Chebyshev polynomials of the second kind. We will also denote them as
|N,w〉. We also introduce the states

|x,w〉 =
q−1∑
s=0

exp

(
i
2πsw

q

)
|x, s〉 =

∞∑
N=−∞

u(x,N,w)|N,w〉 (34)

which can be interpreted as position states for the vortices in the Aharonov–Casher experiment
discussed in section 3. Linear combinations of these states (with fixedw and varyingN )

|χ(w)〉 =
∞∑

N=−∞
b′(N,w)|N,w〉 =

∫
dx b′(x;w)|x,w〉 (35)

where
∞∑

N=−∞
|b′(N;w)|2 =

∫
dx |b′(x;w)|2 = 1 (36)

give general wavefunctions characterized by fixedw. In these states the charge is certain and
the flux is uncertain. Physically they describe Aharonov–Casher phenomena (in the absence
of decoherence), which as we explained above are related to the insulating phase.

It is seen that in the superconducting phase (or more generally in experiments which
simulate the superconducting phase), the system is in one of the states|ψ(s)〉 or in mixtures
of these states. In the insulating phase (or more generally in experiments which simulate the
insulating phase), the system is in one of the states|χ(w)〉 or in mixtures of these states.
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5. Flux and charge operators

The flux operator is defined as

ŝ =
∑
N,s

s|N, s〉〈N, s| (37)

and has eigenvaluess and eigenfunctions the|ψ(s)〉 of equation (30). The charge operator is
defined as

ŵ =
∑
N,w

w|N,w〉〈N,w| (38)

and has eigenvaluesw and eigenfunctions the|χ(w)〉 of equation (35).
Although clearly the formalism is similar to the Harmonic oscillator, we stress that here the

w−s phase space is a discretized torus. In [15] we have studied in detail the Heisenberg–Weyl
group of discrete displacements:

E = exp

(
−i

2π

q
ŝ

)
F = exp

(
i
2π

q
ŵ

)
FE = EF exp

(
i
2π

q

)
Eq = Fq = 1.

(39)

Since this group is discrete, thêw, ŝ do not obey the commutation relation2π
q

[w, s] = i.
However, in the largeq limit the discretized torus effectively becomes a continuum which
locally is a plane. In this limit thêw, ŝ can be assumed to obey the commutation relation
2π
q

[w, s] = i. We work in the largeq limit and we use the commutation relation:

[W,S] = i W =
(

2π

q

)1/2

w S =
(

2π

q

)1/2

s. (40)

W , S are rescaled charge and flux, which for finiteq are discrete variables; but in the largeq
limit considered here, they become continuous variables.

We consider a density matrixρ and define the phase uncertainty as

1S = {Tr[ρS2] − [Tr(ρS)]2}1/2 (41)

and the charge uncertainty as:

1W = {Tr[ρW 2] − [Tr(ρW)]2}1/2. (42)

In the largeq limit considered here, we can write the uncertainty relation1S1W > 1
2 (for

smaller values ofq the entropic uncertainty relations can be used).

6. Decoherence in which-path experiments

We consider an Aharonov–Bohm which-path experiment in which, due to external disturbances
by the observer, the electric charges are in the mixed state of equation (14). This is realizable
in the apparatus of figure 1, which, however, now contains a path observation mechanism. The
intensity at some point1 on the screen is:

I (1) =
q−1∑
s=0

〈x, s|ρ1|x, s〉 =
q−1∑
s=0

|a(s)|2|〈x, s|ψ(s)〉|2 =
q−1∑
s=0

|a(s)|2Is(1) (43)

whereIs(1) = |〈x, s|ψ(s)〉|2 is the result given in equation (4) witheφ = 2πs/q. This
equation shows clearly how the visibility is destroyed in which-path experiments. For
|a(s)|2 = 1/q and the simple case of paths with winding numbers 0 and 1 only (for which
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as we have seen in section 2 we get the maximum visibility), we use asIs(1) the result of
equation (3) and get

I (1) = 1 +
1

q

q−1∑
s=0

cos

(
σs +

2πs

q

)
. (44)

Assuming a constantσs we find that the sum is zero,I (1) = 1 and the visibility is zero.
Very similar arguments can be presented for the Aharonov–Casher which-path experiment.

This is realizable in the apparatus of figure 2, equipped with a path observation mechanism.
Then

V = V0

[ q−1∑
w=0

〈x,w|ρ2|x,w〉
]
= V0

[ q−1∑
w=0

|a(w)|2|〈x,w|χ(w)〉|2
]

=
q−1∑
w=0

|a(w)|2Vw (45)

whereVw = V0|〈x,w|χ(w)〉|2 is the result given in equation (20) withQ = 2ew/q.
This equation shows clearly how the visibility is destroyed in which-path experiments. For
|a(w)|2 = 1/q and the simple case of paths with winding numbers 0 and 1 only, we use asVw
the result of equation (19) and get

V = V0

[
1 +

1

q

q−1∑
w=0

cos

(
τw +N80

2ew

q

)]
. (46)

Assuming a constantτw we find that the sum is zero,V = V0 and the visibility is zero.
It should be emphasized that there is a difference between Aharonov–Bohm which-path

experiments and Aharonov–Casher which-path experiments. In the former case the relative
phase between the two electron wavefunctions is disturbed by the measuring apparatus and we
get decoherence; in the latter case the relativedualphase between the two vortex wavefunctions
is disturbed by the measuring apparatus and we get ‘dual decoherence’ (i.e. decoherence of
the dual phase).

7. Discussion

The Aharonov–Bohm effect studies the interference of electric charges winding around a
magnetic flux tube. It uses the electron wavefunction whose phase is related to the vector
potential and the magnetic flux of the vortex. The Aharonov–Casher effect studies the
interference of magnetic vortices winding around an electric charge line. It uses the vortex
wavefunction whose dual phase is related to the dual vector potential and the electic charge
at the centre. In both cases we can have which-path experiments where the measuring
process destroys the relative phase and relative dual phase and leads to decoherence and dual
decoherence, correspondingly.

We have considered a unified formalism for all these experiments. Our Hilbert space
contains Aharonov–Bohm electron wavefunctions with various phases and is able to describe
which-path experiments with decoherence. Equations (3), (4) give the results for the case
where there is no decoherence; and equations (43), (44) for the case where we observe the
paths and get decoherence.

The Hilbert space also contains Aharonov–Casher vortex wavefunctions with various
phases and is able to describe which-path experiments, in this context also. Equations (19),
(20) give the results for the case where there is no decoherence; and equations (45), (46) for
the case where we observe the paths and get decoherence.
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The Aharonov–Bohm electron wavefunctions are related to the Aharonov–Casher vortex
wavefunctions through a Fourier transform. Which wavefunction is relevant for a certain
experiment, depends on whether the experiment is in the superconducting or insulating phase.
For experiments in the superconducting phase the Aharonov–Bohm electron wavefunctions are
appropriate. In this case the magnetic superselection rule applies and which-path Aharonov–
Bohm experiments are described by the density matrixρ1 of equation (14). For experiments
in the insulating phase the Aharonov–Casher vortex wavefunctions are appropriate. In this
case the electric superselection rule applies and which-path Aharonov–Casher experiments are
described by the density matrixρ2 of equation (27).

Electric–magnetic duality similar to the one used in this paper, plays an important role
in various branches of physics (Kramers–Wannier duality in condensed matter [19], t’Hooft
duality in Gauge theories [20], duality in quantum hair of black holes [21], superconductor-
insulator duality [18], etc). Therefore, it can be argued that the experiments discussed here,
test ideas which are very fundamental for the whole of physics.
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